{rfName}

Indexat a

Llicència i ús

Citacions

Altmetrics

Anàlisi d'autories institucional

Al-Zubairi, Amal Esmail QasemAutor o coautor
Compartir
Publicacions
>
Article

Exploring the Effect of N-grams with BOW and TF-IDF Representations on Detecting Fake News

Publicat a:International Conference On Data Analytics For Business And Industry (Icdabi). (741-746): - 2022-10-25 (741-746), DOI:

Autors: Amal Esmail Qasem; Mohammad Sajid

Afiliacions

Resum

The Internet is used by millions of users daily, who publish news content on social media like (Twitter, Facebook, etc.). These platforms are becoming the most significant source of spreading fake news, which plays a significant issue for the individual and society. Fake news is incorrect information written to mislead readers. Fake news' text available on these platforms is unstructured and needs to be preprocessed and converted to a numerical format to be used later. Some fake news has seemed natural, making it challenging even for humans to identify them. Therefore, automated fake news detection tools leveraging machine learning methods have become an essential requirement. This paper investigates and compares two feature extraction approaches, Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF), with N-grams, and three conventional machine classifiers, Support Vector

Paraules clau

Indicis de qualitat

Anàlisi del lideratge dels autors institucionals

Hi ha un lideratge significatiu, ja que alguns dels autors pertanyents a la institució apareixen com a primer o últim signant, es pot apreciar en el detall: Últim Autor (AL-ZUBAIRI, AMAL ESMAIL QASEM).