{rfName}
Fr

Indexed in

License and use

Citations

Altmetrics

Analysis of institutional authors

Puig Valls, Domènec SaviMoreno Ribas, AntonioValls Mateu, AïdaAbdelnasser Mohamed Mahmoud, MohamedAbdellatif Fatahallah Ibrahim Mahmoud, HatemSánchez Ruenes, DavidIsern Alarcón, DavidRiaño Ramos, DavidRomaní Also, SantiagoAkram, FarhanAbdulwahab, Saddam Abdulrhman HamedJiménez López, María DoloresMartinez Lluis, SergioRomero Aroca, PedroDahl, VeronicaPascual Fontanilles, JordiGarcia Garcia, Miguel AngelBatet Sanromà, MontserratMarín Isern, LucasArenas Prat, MeritxellMeléndez Rodríguez, Jaime ChristianMoreno Monroy, Ana IsabelAl-Ziyadi, Najlaa Maaroof WahibBanu, Syeda FurrukaBel Enguix, GemmaMartínez Ballesté, AntoniBecerra Bonache, LeonorGómez Jiménez, SergioSolanas Gómez, AgustínVicient Monllao, CarlosCristiano Rodríguez, Julián EfrénAli, Emran Saleh AliCristiano Rodríguez, Julián EfrénMasoumian, ArminSaffari Tabalvandani, NasibehBaget Bernaldiz, MarcMitrana, VictorSchuhmacher Ansuategui, MartaDomingo Ferrer, JosepAlvarez Fernandez, Susana MariaHerrera Gómez, BlasBorràs Nogués, JoanFernández Sabater, AlbertoFerré Bergadà, MariaMurphy, MichelleBohada Jaime, John AlexanderKumar, VikasKrassovitskiy, AlexanderDel Vasto Terrientes, Luis MiguelHabibi Aghdam, HamedHassan, Fadi Abdulfattah MohammedPadilla Carrasco, DanielOrama, Ayebakuro JonathanSchwarz Schuler, Joao PauloPandey, NidhiHaffar, RamiBen Loussaief, EddardaaAbdelrahim Osman Hassan, LoayTahmooresi, MaryamYadav, Gaurav KumarEscorcia Gutierrez, José RafaelRadeva, Petia IvanovaSoria Leyva, EddyFernández Sáez, José

Share

Publications
>
Scientific Journal

Frontiers in Artificial Intelligence and Applications

Publicated to: - 390(), DOI: 15356698

Authors: Pascual Fontanilles, Jordi; VALLS MATEU, AÏDA; MORENO RIBAS, ANTONIO; ROMERO AROCA, PEDRO

Affiliations

Sant Joan de Reus University Hospital; Institut d'Investigació Sanitària Pere Virgili - Author
Universitat Rovira i Virgili - Author
Universitat Rovira i Virgili; Institut d'Investigació Sanitària Pere Virgili - Author

Abstract

Electronic Health Records (EHRs) contain valuable historical information for building clinical decision support systems. In this study, we focus on exploring novel techniques for improving the prediction of the severity degree of Diabetic Retinopathy (DR) in Diabetes Mellitus patients. In a previous paper, we evaluated the behaviour of different classifiers using the patients' retrospective EHR data to assess their current level of DR, achieving good results. Continuing that work, we now focus on studying different methods for encoding numerical variables, in order to improve the accuracy of these predictions. We propose three normalization methods based on fuzzy sets for encoding numerical data. Because of the inherent uncertainty of medical data, using fuzzy logic to represent the numerical variables can enhance the accuracy of a classifier. The results of the experimental tests, conducted on a dataset of 2108 patients, show that for low-complexity classifiers (such as KNN or CNN) a classical fuzzification technique works the best, while for more complex architectures (like TapNet or ResNet) a fuzzy two-hot encoding gives the best performance. The final aim of the research is to build a clinical decision support system that can make an accurate and personalised prediction of DR evolution.

Keywords

Artificial intelligence

Quality index

Leadership analysis of institutional authors

This work has been carried out with international collaboration, specifically with researchers from: Netherlands.

There is a significant leadership presence as some of the institution’s authors appear as the first or last signer, detailed as follows: Last Author ().