{rfName}
Fr

Indexado en

Licencia y uso

Citaciones

Altmetrics

Análisis de autorías institucional

Puig Valls, Domènec SaviMoreno Ribas, AntonioValls Mateu, AïdaAbdelnasser Mohamed Mahmoud, MohamedAbdellatif Fatahallah Ibrahim Mahmoud, HatemSánchez Ruenes, DavidIsern Alarcón, DavidRiaño Ramos, DavidRomaní Also, SantiagoAkram, FarhanAbdulwahab, Saddam Abdulrhman HamedJiménez López, María DoloresMartinez Lluis, SergioRomero Aroca, PedroDahl, VeronicaPascual Fontanilles, JordiGarcia Garcia, Miguel AngelBatet Sanromà, MontserratMarín Isern, LucasArenas Prat, MeritxellMeléndez Rodríguez, Jaime ChristianMoreno Monroy, Ana IsabelAl-Ziyadi, Najlaa Maaroof WahibBanu, Syeda FurrukaBel Enguix, GemmaMartínez Ballesté, AntoniBecerra Bonache, LeonorGómez Jiménez, SergioSolanas Gómez, AgustínVicient Monllao, CarlosCristiano Rodríguez, Julián EfrénAli, Emran Saleh AliCristiano Rodríguez, Julián EfrénMasoumian, ArminSaffari Tabalvandani, NasibehBaget Bernaldiz, MarcMitrana, VictorSchuhmacher Ansuategui, MartaDomingo Ferrer, JosepAlvarez Fernandez, Susana MariaHerrera Gómez, BlasBorràs Nogués, JoanFernández Sabater, AlbertoFerré Bergadà, MariaMurphy, MichelleBohada Jaime, John AlexanderKumar, VikasKrassovitskiy, AlexanderDel Vasto Terrientes, Luis MiguelHabibi Aghdam, HamedHassan, Fadi Abdulfattah MohammedPadilla Carrasco, DanielOrama, Ayebakuro JonathanSchwarz Schuler, Joao PauloPandey, NidhiHaffar, RamiBen Loussaief, EddardaaAbdelrahim Osman Hassan, LoayTahmooresi, MaryamYadav, Gaurav KumarEscorcia Gutierrez, José RafaelRadeva, Petia IvanovaSoria Leyva, EddyFernández Sáez, José

Compartir

Publicaciones
>
Revista Científica

Frontiers in Artificial Intelligence and Applications

Publicado en: - 390(), DOI: 15356698

Autores: Pascual Fontanilles, Jordi; VALLS MATEU, AÏDA; MORENO RIBAS, ANTONIO; ROMERO AROCA, PEDRO

Afiliaciones

Sant Joan de Reus University Hospital; Institut d'Investigació Sanitària Pere Virgili - Autor o Coautor
Universitat Rovira i Virgili - Autor o Coautor
Universitat Rovira i Virgili; Institut d'Investigació Sanitària Pere Virgili - Autor o Coautor

Resumen

Electronic Health Records (EHRs) contain valuable historical information for building clinical decision support systems. In this study, we focus on exploring novel techniques for improving the prediction of the severity degree of Diabetic Retinopathy (DR) in Diabetes Mellitus patients. In a previous paper, we evaluated the behaviour of different classifiers using the patients' retrospective EHR data to assess their current level of DR, achieving good results. Continuing that work, we now focus on studying different methods for encoding numerical variables, in order to improve the accuracy of these predictions. We propose three normalization methods based on fuzzy sets for encoding numerical data. Because of the inherent uncertainty of medical data, using fuzzy logic to represent the numerical variables can enhance the accuracy of a classifier. The results of the experimental tests, conducted on a dataset of 2108 patients, show that for low-complexity classifiers (such as KNN or CNN) a classical fuzzification technique works the best, while for more complex architectures (like TapNet or ResNet) a fuzzy two-hot encoding gives the best performance. The final aim of the research is to build a clinical decision support system that can make an accurate and personalised prediction of DR evolution.

Palabras clave

Artificial intelligence

Indicios de calidad

Análisis de liderazgo de los autores institucionales

Este trabajo se ha realizado con colaboración internacional, concretamente con investigadores de: Netherlands.

Existe un liderazgo significativo ya que algunos de los autores pertenecientes a la institución aparecen como primer o último firmante, se puede apreciar en el detalle: Último Autor ().